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We investigate how various treatments of exact exchange affect defect charge transition levels and band
edges in hybrid functional schemes for a variety of systems. We distinguish the effects of long-range vs
short-range exchange and of local vs nonlocal exchange. This is achieved by the consideration of a set of four
functionals, which comprise the semilocal Perdew-Burke-Ernzerhof �PBE� functional, the PBE hybrid �PBE0�,
the Heyd-Scuseria-Ernzerhof �HSE� functional, and a hybrid derived from PBE0 in which the Coulomb kernel
in the exact exchange term is screened as in the HSE functional but which, unlike HSE, does not include a
local expression compensating for the loss of the long-range exchange. We find that defect levels in PBE0 and
in HSE almost coincide when aligned with respect to a common reference potential, due to the close total-
energy differences in the two schemes. At variance, the HSE band edges determined within the same alignment
scheme are found to shift significantly with respect to the PBE0 ones: the occupied and the unoccupied states
undergo shifts of about +0.4 eV and −0.4 eV, respectively. These shifts are found to vary little among the
materials considered. Through a rationale based on the behavior of local and nonlocal long-range exchange,
this conclusion is generalized beyond the class of materials used in this study. Finally, we explicitly address the
practice of tuning the band gap by adapting the fraction of exact exchange incorporated in the functional. When
PBE0-like and HSE-like functionals are tuned to yield identical band gaps, their respective results for the
positions of defect levels within the band gap and for the band alignments at interfaces are found to be very
close.
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I. INTRODUCTION

Hybrid functionals are orbital-dependent functionals in
which the exchange term is described partly by exact nonlo-
cal exchange and partly by a semilocal expression.1,2 Calcu-
lations for a standard set of molecules show that hybrid func-
tionals give total energies of a higher accuracy than
�semi�local-density functionals, such as the local-density ap-
proximation or the generalized gradient approximation.3

While hybrid functionals have rapidly grown into a standard
tool in quantum chemistry, their general use in condensed-
matter electronic-structure research is much more recent and
has long been hampered by the high computational cost as-
sociated to the treatment of nonlocal exchange in plane-wave
basis sets. At present, it appears that a transition from
gradient-corrected density functionals to hybrid functionals
is taking place, resembling very much the one in the mid-
nineties from purely local density functionals to gradient-
corrected density functionals.4,5

With respect to semilocal functionals, hybrid functionals
give an improved description of several properties, such as
formation enthalpies, bond lengths of molecules, lattice pa-
rameters, bulk moduli, etc.3,6–10 However, their ability11–15 of
yielding band gaps and excitation energies in generally better
agreement with experiment has often been one major moti-
vation for adopting this new paradigm. Indeed, electronic-
structure research involving the positioning of defect levels
with respect to relevant band edges16–28 and the band align-
ment at interfaces29,30 have already been taking advantage of
such hybrid functional schemes.

There exists a variety of hybrid functionals that are pres-
ently in use. In condensed-matter electronic-structure re-

search, the most popular hybrid functionals are derived from
the generalized gradient approximation proposed by Perdew,
Burke, and Ernzerhof �PBE�.31 A class of hybrid functionals
is derived therefrom by replacing a fraction of PBE exchange
by its nonlocal counterpart.32 A general rationale has been
developed favoring a fraction of 25%, although other frac-
tions might admittedly be more appropriate for specific ma-
terials or even properties. The hybrid functional with a frac-
tion of 25% is here referred to as PBE032 but other
denominations such as PBE1PBE �Ref. 7� and PBEh are also
in use.

More recently, Heyd, Scuseria, and Ernzerhof �HSE� in-
troduced a hybrid functional in which the fraction of nonlo-
cal exchange is preserved at short range but replaced by a
semilocal expression at long range.8,33 The separation be-
tween short-range and long-range exchange is achieved
through the replacement of the Coulomb potential by a
screened potential in the nonlocal exchange part, in the spirit
of the screened exchange method used within the local-
density approximation �sX-LDA�.34 The HSE functional
thereby removes some unphysical features of exact nonlocal
exchange in the description of metallic systems.8 Further-
more, the HSE functional offers computational advantages in
converging the long-range exchange contribution in both
Gaussian and plane-wave formulations.8,13

In this work, we systematically investigate how the vari-
ous treatments of exchange in hybrid functionals affect �i�
the relative location of calculated defect levels and band
edges and �ii� the calculated band alignment at interfaces. We
focus on hybrid functionals that are currently in use in the
literature such as the PBE0 and HSE functionals, and distin-
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guish the effects of long-range vs short-range exchange and
of local vs nonlocal exchange. In our study, we also address
the common practice of tuning the fraction of exact exchange
to match the electronic band gap. For illustrating these ef-
fects, we consider a set of semiconductors and insulators
covering a wide range of band gaps. Our calculations reveal
that the energy levels obtained with these functionals show
characteristic shifts which are to a large extent material in-
dependent. We provide a rationale which generalizes this
conclusion beyond the class of materials used in this study.

Our paper is organized as follows. In Sec. II, we describe
the class of functionals used in this work. We also give in
this section a description of the physical quantities consid-
ered in this work. In Sec. III, we focus on total-energy dif-
ferences associated to localized systems, such as ionization
potentials of molecular systems and charge transition levels
of point defects in extended bulk systems. Section IV is de-
voted to delocalized states. More specifically we focus on the
energy levels of the band edges of extended bulk materials
and on the band alignment at interfaces between two mate-
rials. In Sec. V, we provide a rationale for understanding our
results. The conclusions are drawn in Sec. VI.

II. FUNCTIONALS

In this paper, we use four functionals which differ by the
way the exchange energy is treated. This approach enables us
to examine step-by-step how different treatments of the ex-
change energy affect the results. In all functionals adopted in
this work, the correlation energy corresponds to that used in
the generalized gradient approximation proposed by Perdew,
Burke, and Ernzerhof.31

The first functional corresponds to the standard PBE func-
tional. Thus, the exchange energy is given by the purely
semilocal PBE exchange Ex

PBE.31

The second functional corresponds to the PBE0 hybrid32

in which 25% of PBE exchange is replaced by exact nonlo-
cal exchange showing the normal 1 /r kernel. When � is
allowed to vary, we refer to the generalized class of function-
als given by

Ex
PBE0��� = �Ex

exact + �1 − ��Ex
PBE. �1�

The third functional is the HSE screened hybrid.8,33 The
HSE functional is derived from PBE0 by replacing the long-
range part of the exact exchange by a local expression of
PBE exchange. Or, alternatively, the HSE functional is de-
rived from PBE by replacing a fraction of short-range local
PBE exchange by corresponding exact short-range exchange.
The separation between short-range and long-range exchange
is achieved through the use of a screened exchange kernel
given by erfc��r� /r, where the parameter � corresponds to
an inverse screening length and defines the extent of the
exchange kernel in real space. The original HSE functional,
referred to HSE06 in the literature, carries the parameters
�=25% and �=0.106 bohr−1.33 For generic parameters �
and �,

Ex
HSE��,�� = �Ex

exact,SR��� + �1 − ��Ex
PBE,SR��� + Ex

PBE,LR��� .

�2�

The fourth functional, which we refer to as sPBE0, is
derived from PBE0 by introducing a screened kernel in the
part of exact exchange,

Ex
sPBE0��� = �Ex

exact,SR + �1 − ��Ex
PBE. �3�

The screening is described in the same way as in the short-
range part of the HSE functional. However, unlike the HSE
functional, the missing long-range exchange is not restored
by a local expression. For � and �, we use the same values
as in HSE. This kind of functional in which the long-range
exchange associated to the screened kernel is completely
missing, has already been used in the literature.20,21,30,35

The first three functionals can all be described through the
HSE-like functional given in Eq. �2� by setting specific val-
ues for the parameters � and �. Furthermore, the following
relationships hold: �i� all hybrid functionals transform to
PBE for �→0; �ii� HSE and sPBE0 become equivalent to
PBE0 for �→0; and �iii� HSE is identical to PBE in the
limit �→�.

While we do not explicitly treat sX-LDA functionals in
this work, it is worth pointing out that sX-LDA and HSE are
conceptually similar. Both sX-LDA and HSE rely on a
screened Coulomb kernel in the exact exchange term. Both
sX-LDA and HSE involve a separation of short-range and
long-range exchange and both replace the nonlocal long-
range exchange by a semilocal expression. However, the
semilocal reference for sX-LDA is the local-density approxi-
mation, instead of the PBE adopted in HSE. In sX-LDA,
100% of the short-range exchange is calculated exactly com-
pared to only 25% in HSE. The most significant difference
concerns the screening length: sX-LDA adopts a Thomas-
Fermi screening length which depends on the electron den-
sity while the screening length is a fixed parameter in HSE.
When the used screening lengths are close, the present dis-
cussion involving HSE should similarly apply to sX-LDA.

Defect energy levels are determined through the standard
formation energy formulation based on total-energy
differences.36 The formation energy of a defect in the charge
state q is derived as a function of the electron chemical po-
tential �,

Ef
q��� = Etot

q − Etot
bulk − �

i

ni�i + q�� + �v + �V� + Ecorr
q ,

�4�

where Etot
q and Etot

bulk are the calculated total energies of the
defect and the host supercells, ni and �i are the number and
the chemical potential of the added �or removed� atomic spe-
cies, and �v+�V corresponds to the bulk valence-band maxi-
mum in the energy reference of the defect calculation. Ecorr

q

takes care of the spurious electrostatic interactions due to
periodicity. Here, we only included the first order monopole
corrections,37 which generally produces improved results for
both molecules and defects. We note that this correction is
the same for all functionals, and therefore does not affect the
comparison between the functionals.

The charge transition levels correspond to electron chemi-
cal potentials for which the formation energies of two differ-
ent charge states are equal,
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�q/q� =
�Etot

q� − Etot
q � + �Ecorr

q� − Ecorr
q �

q − q�
− �v − �V . �5�

For convenience, we also define the charge transition levels
�̄q/q� with respect to the average electrostatic potential 	
through the relation �̄q/q�=�q/q�−	.

In order to highlight electronic-structure effects associated
to the exchange term, the calculations with the various func-
tionals were performed for the same structural geometries,
for which we took the equilibrium structures at the PBE
level. All the calculations were performed within a scheme
based on plane-wave basis sets and normconserving pseudo-
potentials. The pseudopotentials were generated at the PBE
level and used without modification with all the functionals.
Comparisons with all-electron calculations indicate that such
a pseudopotential approach can be very accurate when the
charge densities of core and valence wave functions do not
show significant overlap.38 We used an energy cutoff of 70
Ry, unless specified otherwise. The reciprocal-space sam-
pling is generally performed using the sole 
 point. For the
materials and supercell sizes considered in this work, this
leads to converged results in all cases except for bulk
silicon38 in which case a finer sampling was used. All the
calculations involving nonlocal exchange, either screened or
unscreened, include a singularity correction to accelerate the
convergence with k-point sampling in reciprocal space.38

This also guarantees that the screened functionals correctly
approach the PBE0 results in the limit �→0.

The calculations were performed with the codes
QUANTUM-ESPRESSO �Ref. 39� and CPMD.40 For the purpose
of this project, we implemented the HSE subroutines41 in
both codes. In the implementation, the long-range exchange
energy Ex

PBE,LR in Eq. �2� is obtained through the expression,
Ex

PBE,LR=Ex
PBE−Ex

PBE,SR, in which the PBE exchange explic-
itly appears. The derivation of the Ex

PBE,SR term is based on
the exchange hole formulation of the PBE functional.42 For
internal consistency, the original HSE functional thus uses
this formulation. However, the results obtained with the
exchange-hole PBE functional barely differ from those ob-
tained with the conventional PBE functional. For instance,
we found variations in the eigenvalues of silicon within 20
meV. Hence, we chose to use the conventional PBE func-
tional in the present work in order to exactly recover the PBE
limit for �→0.

III. LOCALIZED STATES

A. Finite systems

Comparisons between the performances of PBE0 and
HSE for molecular properties based on total-energy differ-
ences, such as formation enthalpies, have already been pre-
sented in the literature.8,43 The results are generally very
similar insofar the screening length often exceeds the size of
the molecule. However, the �generalized� Kohn-Sham eigen-
values are seldom reported.

Here, we study two molecules in detail: the nitrogen
dimer �N2� and naphthalene �C10H8�. For both molecules, we
used cubic simulation cells with sides of 30 bohrs. The en-

ergy cutoff was set to 90 Ry for N2 and to 70 Ry for naph-
thalene. The calculated results are given in Table I and in-
clude the Kohn-Sham eigenvalues of the highest occupied
molecular orbital �HOMO� and of the lowest unoccupied
molecular orbital �LUMO� referenced with respect to the
vacuum level, the corresponding Kohn-Sham energy gap,
and the ionization potentials �IPs� derived from total-energy
differences.

The ionization potentials calculated in the PBE are al-
ready fairly close to the experimental values. The PBE0 and
HSE results are very close to each other and improve over
the PBE results. The close agreement achieved between the
sPBE0 and PBE results for N2 appears accidental since such
a matching is not found for naphthalene.

The LUMO levels are very close in PBE0 and sPBE0. At
variance, with respect to PBE0, the LUMO levels found in
HSE drop by 0.38 eV and 0.36 eV for N2 and naphthalene,
respectively. Shifts of similar size are also found for the
HOMO. For both molecules, the HOMO level in HSE is
about 0.4 eV higher than in PBE0 while the HOMO level in
sPBE0 is about 0.8 eV higher than in PBE0. Consequently,
the Kohn-Sham energy gap in HSE and sPBE0 are very
close, underestimating the PBE0 energy gap by 0.7–0.8 eV.
The fact that the energy gaps in HSE and sPBE0 are close
should be assigned to the occurrence of the same nonlocal
exchange term in both functionals, leading to the same band-
gap opening in the generalized Kohn-Sham eigenvalue
spectrum.45 With respect to sPBE0, HSE also includes the
effect of the long-range PBE exchange, which by compari-
son is found to shift the eigenvalues of occupied and unoc-
cupied states downward by about 0.4 eV.

For the specific case of the N2 dimer, we determined the
equilibrium bond length for each functional. We found bond
lengths of 1.102 Å �PBE�, 1.090 Å �PBE0�, 1.090 Å

TABLE I. The �generalized� Kohn-Sham eigenvalues of the
highest occupied molecular orbital �HOMO� and of the lowest un-
occupied molecular orbital �LUMO� levels referenced with respect
to the vacuum level, the corresponding Kohn-Sham energy gaps
�Eg

KS�, and the ionization potentials �IP� calculated with various
functionals for the N2 dimer and the naphthalene molecule. All
energies are in electron volt. Experimental values are from Ref. 44.

HOMO LUMO Eg
KS IP

N2

PBE −10.25 −1.95 8.30 15.29

PBE0 −12.16 −0.64 11.52 15.67

HSE −11.76 −1.02 10.74 15.66

sPBE0 −11.36 −0.64 10.73 15.26

Expt. 15.58

Naphthalene

PBE −5.51 −2.12 3.39 7.96

PBE0 −6.39 −1.33 5.06 8.06

HSE −6.00 −1.69 4.32 8.05

sPBE0 −5.62 −1.31 4.32 7.67

Expt. 8.14
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�HSE�, and 1.092 Å �sPBE0�. These results compare very
well with projector-augmented-wave and all-electron results
reported in Ref. 43, conferring further confidence to our
pseudopotential results. Moreover, since the N2 bond length
is very similar for all hybrid functionals, the above discus-
sion about eigenvalue shifts holds in this case also for re-
laxed geometries.

B. Defects

In a recent investigation,22 it was shown that charge tran-
sition levels of atomic-size defects do not significantly
change when going from PBE to PBE0, provided the defect
levels are aligned with respect to a common reference poten-
tial. We here extend the comparison to sPBE0 and HSE.

The correspondence between defect levels appears quite
robust but deteriorates when the extension of the defect wave
function increases22 or when its character closely resembles
that of the bulk band states.26 Therefore, we here focus on
�-quartz SiO2 for which the identified trends appear most
clearly because of its large band gap. Following Ref. 22, we
modeled SiO2 with a bulk model of 72 atoms and considered
a set of 17 transition levels for five different types of defects.
More specifically, we considered the following defects and
charge states: the interstitial H �+1,0 ,−1�, the H bridge -Si-
H-Si- �+1,0 ,−1�, the Si dimer �+1,0�, the interstitial O2
�0,−1�, and the substitutional N �0,−1�. Both thermody-
namic and vertical charge transition levels were calculated.
For the alignment, we took the average electrostatic poten-
tial. In Fig. 1, the transition levels determined within sPBE0
and HSE are displayed vs the PBE0 results. The HSE results
are found to agree well with the PBE0 results, and conse-
quently also with the PBE results.22 At variance, the sPBE0
results appear to be rigidly shifted upward by 0.41 eV with
respect to PBE0 �and thus also to HSE and PBE�.

These results indicate that the defect levels obtained with
either PBE0-like or HSE-like functionals do not shift signifi-
cantly when the fraction of exact exchange varies between
�=0% and �=25%. A more detailed analysis shows that the
small shifts depend linearly on � �Ref. 24� because of the
linear nature of the mixing and the negligible variations un-
dergone by the wave functions.46

We also investigated how defect levels are affected when
the screening parameter � is varied within the functional
form of the HSE functional. We focus on the substitutional
nitrogen defect in �-quartz SiO2. In Fig. 2, we give the evo-
lution of the thermodynamic �0 /−1� charge transition level
for � varying between 0 and 0.2 bohr−1. For this range of
values, we found the defect level to shift by about 35 meV,
which is negligible with respect to the shifts undergone by
the SiO2 band edges �Fig. 2�. Figure 2 also shows the de-
tailed evolution of the defect level with �, exhibiting a non-
linear behavior at small �.

IV. DELOCALIZED STATES

A. Band edges

In this section, we compare how the �generalized� Kohn-
Sham eigenvalues pertaining to the band edges shift for the

four functionals used in this work. Since the PBE0 and HSE
defect levels do not undergo significant shifts, their position
in the band gap is directly determined by the band-edge
shifts.

We considered four bulk materials with band gaps ranging
from 1.1 to 9 eV: silicon, 4H-SiC, monoclinic HfO2, and
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FIG. 1. �Color online� Comparison of the charge transition lev-
els in �-quartz SiO2: �a� HSE vs PBE0 and �b� sPBE0 vs PBE0.
The solid lines are obtained through linear regressions whereas the
dotted line in �b� indicates the ideal correspondence. All energies
are referred to the average electrostatic potential, shifted to coincide
with the PBE0 valence-band maximum for convenience.
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FIG. 2. �Color online� The �0 /−� charge transition level �̄ of
substitutional nitrogen and the bulk band edges in �-quartz SiO2

determined with the functional form of HSE for varying screening
parameter �. The results corresponding to the PBE0 and HSE func-
tionals are recovered for �=0 and �=0.106 bohr−1, respectively.
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�-quartz SiO2. For silicon, we used a primitive cell with a

-centered 12�12�12 k-point sampling. The Brillouin-
zone integration in the matrix elements of the exchange op-
erator is performed with a coarser 6�6�6 �q-point� mesh.13

The PBE-optimized lattice constant is 5.465 Å, only slightly
larger than the experimental value �5.43 Å, Ref. 47�. For
4H-SiC, we used a 96-atom supercell and relaxed the atomic
coordinates while keeping the c /a ratio fixed at the experi-
mental value of 3.2714 �Ref. 48�. This resulted in a lattice
constant of 3.096 Å,30 in good agreement with the experi-
mental value of 3.073 Å. For monoclinic HfO2, we used a
96-atom 2�2�2 supercell with PBE cell parameters a
=5.09 Å, b=5.12 Å, c=5.34 Å, and �=99.61°.20 Corre-
sponding experimental values are a=5.12 Å, b=5.17 Å,
and c=5.29 Å, and �=99.11°.49 For �-quartz SiO2, we used
a 72-atom supercell with a=4.97 Å and c=5.45 Å, to be
compared with the corresponding experimental values of a
=4.91 Å and c=5.40 Å.50

The band-edge positions expressed as shifts with respect
to the PBE values are collected for all hybrid functionals in
Table II. Different calculations are aligned through the aver-
age electrostatic potential. The generalized Kohn-Sham val-
ues obtained with the various hybrid functionals follow the
same trends found for the molecules. The conduction band
edges obtained with PBE0 and sPBE0 are very close, the
band gaps obtained with HSE and sPBE0 are very close, and
the valence-band edges shift upward by �0.4 eV when go-
ing from PBE0 to HSE and by �0.8 eV when going from
PBE0 to sPBE0. Consequently, there appears to be a
material-independent shift of �0.8 eV in the band gap when
going from PBE0 to HSE or sPBE0. Band-gap differences of
similar size between PBE0 and HSE have been obtained
previously9 but a clear trend could not be revealed because
of the use of relaxed �and thus different� structures. A ratio-
nale for the origin of these shifts will be provided in Sec. V.

We could not identify any material-independent relation
between the band edges obtained with the PBE functional
and those obtained with PBE0 and HSE hybrid functionals.
For the present set of investigated materials, about 60–70 %
of the band gap increase results from a downwards shift of
the valence band. However, this trend does not appear to be
general since in the case of germanium, the conduction-band
shift has been found to dominate.24

For specific choices of the parameters � and �, the func-
tionals PBE, PBE0, and HSE can be obtained from the HSE-
like functional given in Eq. �2�. We illustrate this relationship
by studying in Fig. 3 the band gap of �-quartz SiO2 in the
two-dimensional parameter space defined by � and �. Vary-
ing � at fixed � corresponds to moving along vertical lines.
The most common functionals are achieved for �=0 and �
=0.106 bohr−1, corresponding to PBE0-like and HSE-like
functionals, respectively. For PBE0-like functionals, the
band gap increases linearly with the fraction �, in accord
with previous investigations.24,29 Figure 3 shows that the lin-
ear increase in the band gap with � approximately also holds
for HSE-like functionals, albeit with a smaller rate. In case
one wants the calculation to achieve a band gap of 9.3 eV,
this can be realized either by setting ��35% in PBE0-like
functionals or ��50% in HSE-like functionals. Going fur-
ther to even smaller screening lengths, and therefore larger

�, this would require a very large fraction of exact exchange
reaching ultimately the limit of �=100%, as in the sX-LDA
method. However, for such large values of �, it has been
observed that the thermochemistry of molecular systems
degrades.8,51 As far as the dependence on � at fixed � is
concerned �horizontal axes in Fig. 3�, we observe a stronger
nonlinearity, particularly for �
0.106 bohr−1.

In the latest generation of nonscreened hybrid functionals,
the fraction of exact exchange � is the only remaining
parameter.32 Its value is generally fixed to 25% as done in
PBE0 but may admittedly be material or even property
dependent.32 It has thus become common practice tuning the
parameter � of PBE0-like and HSE-like functionals in order
to reproduce the experimental band gap. It is therefore of
interest to determine whether different hybrid functionals
yield defect levels at similar locations within the band gap.
Since it has been found that scaling � does not significantly
affect the positions of defect levels when aligned with re-
spect to the average electrostatic potential �cf. Ref. 22 for
PBE0 and Sec. III B for HSE�, the location within the band

TABLE II. �Generalized� Kohn-Sham eigenvalues for valence
��Ev� and conduction ��Ec� band edges of Si, �-quartz SiO2, 4H-
SiC, and monoclinic HfO2, calculated with various hybrid function-
als. The eigenvalues are expressed as shifts with respect to the PBE
values and different calculations are aligned through the average
electrostatic potential. Band gaps �Eg� and corresponding band gap
variations ��Eg� are also given. The shifts of valence- and
conduction-band edges are also expressed relative to the band-gap
variation: �Ev

rel=�Ev /�Eg, �Ec
rel=�Ec /�Eg. All energies are in

electron volt.

Eg �Ev �Ec �Eg �Ev
rel �Ec

rel

Si

PBE 0.61

PBE0 1.85 −0.70 0.54 1.24 56.3% 43.7%

HSE 1.20 −0.37 0.22 0.58 62.7% 37.1%

sPBE0 1.17 0.03 0.59 0.56 −4.8% 104.9%

SiC

PBE 2.23

PBE0 3.95 −1.03 0.70 1.72 59.5% 40.5%

HSE 3.18 −0.63 0.32 0.95 66.1% 33.9%

sPBE0 3.17 −0.23 0.71 0.94 24.7% 75.3%

HfO2

PBE 4.34

PBE0 6.75 −1.49 0.92 2.41 61.7% 38.3%

HSE 5.98 −1.09 0.55 1.64 66.5% 33.5%

sPBE0 5.96 −0.69 0.93 1.62 42.5% 57.5%

SiO2

PBE 5.64

PBE0 8.23 −1.75 0.84 2.59 67.6% 32.4%

HSE 7.47 −1.35 0.48 1.82 73.9% 26.1%

sPBE0 7.44 −0.95 0.85 1.79 52.8% 47.2%
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gap ultimately depends on the position of the band edges. In
Table III, we give the position of the valence-band edges for
the four bulk materials studied in this section when calcu-
lated with PBE0-like and HSE-like functionals in which the
parameter � has been tuned. As illustrated in Fig. 4 for
�-quartz SiO2, this procedure results in different values of �
for PBE0-like and HSE-like functionals but yields in both
cases identical band gaps tuned to a desired value. The band
structures found with �-tuned PBE0-like and HSE-like func-
tionals do not coincide and their displacement shows a ten-
dency to increasing with band gap �Table III�. However, the
observed shifts are relatively small reaching a value of just
�0.2 eV in the worst case corresponding to SiO2, for which
the largest values of � are required. This implies that, for the
materials studied, the locations of defect levels within the
band gap as found with tuned PBE0-like and HSE-like hy-
brid functionals agree rather closely.

The differences between the band edges obtained with
�-tuned HSE and PBE0 functionals are related to the ratio
between the contributions of conduction- and valence-band
shifts to the band gap opening. In PBE0-like functionals, this
ratio is governed by the exact exchange term, generally lead-
ing to unequal displacements of occupied and unoccupied
states. When the HSE eigenvalues are compared to the PBE0
ones, we noticed a symmetric closing of the calculated band
gap by an upward shift of the valence band and a downward
shift of the conduction band, the size of these shifts scaling
linearly with �. Therefore, the eigenvalue differences be-
tween PBE0-like and HSE-like functionals cannot be elimi-
nated by scaling the fraction �, unless the exchange-induced
valence and conduction band shifts are equal. Hence, the
observation that the �-tuned HSE eigenvalues given in Table
III lie systematically lower than the �-tuned PBE0 ones is a
direct consequence of the dominating valence band shift for
the materials studied �cf. Table II�.

B. Band offsets

Band offsets at interfaces are directly affected by shifts of
band edges, and furthermore allow for direct comparisons
with experiment. To access band offsets, we rely on a proce-
dure which consists in determining the lineup of the local
electrostatic potential across an interface model.52 The band
offsets are then found by aligning the band structures of the
two bulk components to the potential on either side of the
interface.

We first focus on the lineup of the electrostatic potential
as found for various functionals. For illustration, we adopt an
atomistic model interface of the Si-SiO2 interface comprising
217 atoms in a superlattice geometry.53 As bulk model for
amorphous SiO2, we took an atomistic structure generated by
ab initio molecular dynamics.54 We determined the planar-
averaged electrostatic potential as a function of the coordi-
nate z across the interface in the PBE, PBE0, HSE, and
sPBE0. In Fig. 5, we display the difference between the PBE
and PBE0 potentials, which indicates an alteration of the
potential lineup by 0.16 eV. This result was first obtained in
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FIG. 3. �Color online� Band gap of �-quartz SiO2 calculated
with the HSE-like functional for varying parameters � and �. The
results corresponding to PBE0 and HSE are indicated by black
disks. The PBE band gap is found in correspondence of the axis
�=0.

TABLE III. Valence-band position ��Ev� for functionals in
which the fraction of exact exchange is tuned ��opt� to reproduce
the desired band gap �Eg

opt�, for PBE0-like and HSE-like function-
als. The band-edge energies are expressed as shifts with respect to
the PBE values and different calculations are aligned through the
average electrostatic potential. The last column gives the difference
between the valence-band positions achieved with the two types of
hybrid functionals. All energies are in electron volt.

Eg
opt

PBE0 HSE

Diff.�opt �Ev �opt �Ev

Si 1.2 0.11 −0.31 0.23 −0.34 −0.03

SiC 3.3 0.15 −0.62 0.27 −0.68 −0.07

HfO2 5.8 0.15 −0.89 0.22 −0.96 −0.07

SiO2 9.3 0.35 −2.45 0.50 −2.68 −0.23
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FIG. 4. Band-edge shifts of �-quartz SiO2 vs the fraction of
exact exchange � for PBE0-like and HSE-like functionals. The
achievement of a given value for the band gap Eg

opt=9.3 eV is
indicated for the two types of functionals and is achieved in corre-
spondence of very close energy levels for the band edges. The en-
ergies are aligned with respect to the average electrostatic potential.
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Ref. 29, where it was also found that this offset scales lin-
early with �. We here extend this analysis to HSE and sPBE0
functionals. Figure 5 shows that the potential offset varies by
only about 5 meV, when going from PBE0 to HSE or from
PBE0 to sPBE0. These results generalize the notion that the
offsets due to the electrostatic dipoles are not affected in a
significant way by the use of hybrid functionals.29 Similar
results were also obtained for surface calculations.55 The in-
sensitivity of interface �or surface� dipoles to the adopted
�hybrid� density functional also confers physical meaning to
the alignment through the average electrostatic potential
adopted throughout this work.22 Indeed, under the assump-
tion of an invariant charge density, this alignment would be
exactly equivalent to that through an external vacuum level.
A detailed discussion about this point is given in Ref. 56.

To obtain the band offsets, the second aspect that needs to
be considered concerns the alignment of the band edges with
respect to the local average potential on either side of the
interface. This precisely corresponds to the valence-band
shifts discussed in Sec. IV B �cf. Table III�. When going
from PBE to a hybrid functional, the major effect results
from shifts of the band edges such as those calculated in
Table II since we have seen that electrostatic effects are
much weaker. For the Si-SiO2 interface, the band offsets cal-
culated with the various functionals are given in Table IV.
The hybrid functional results clearly differ from the PBE
one.29 However, the different hybrid functionals used in this
work all yield essentially the same band offsets.

The behavior of the band offsets calculated with the vari-
ous hybrid functionals can be inferred from the behavior of
the generalized Kohn-Sham eigenvalues. Assuming that the
observed shifts of the valence-band edges by +0.4 eV
�+0.8 eV� between HSE �sPBE0� and PBE0 are indeed
material-independent �see Sec. V�, we conclude that the band
offsets calculated in PBE0, HSE, and sPBE0 are generally
very close. This conclusion is indeed also consistent with
earlier results for the band offsets at the SiC-SiO2 interface,
which showed identical values for PBE0 and sPBE0.30

While band offsets determined with hybrid functional
schemes generally improve upon the semilocal PBE scheme,

deviations up to several electron volts might persist when
compared to experiment �cf. Table IV�.29 In Ref. 29, it was
argued that this discrepancy mainly results from the persist-
ing deficiency of hybrid functionals in describing band gaps.
Indeed, a mixed scheme which yields optimal band gaps for
both interface components showed excellent agreement with
experiment for a set of three different interfaces.29 This
scheme consists in determining the bulk band edges through
a PBE0-like calculation in which the fraction � is tuned to
give the experimental band gap. The band structure are then
aligned through the potential lineup, which does not sensi-
tively depend on �.29 Table IV shows that in the case of the
Si-SiO2 interface a good agreement between theory and ex-
periment is also achieved when using HSE-like functionals
rather than PBE0-like ones. Note that this agreement directly
stems from the close positions of the valence-band edges
found with �-tuned PBE0-like and HSE-like functionals
�Table III�, and is therefore expected to carry more general
validity.

V. RATIONALE

In this section, we provide a rationale for the material-
independent relationships between total-energy differences
and generalized Kohn-Sham eigenvalues obtained with the
PBE0, HSE, and sPBE0 functionals.

A. Total energies

We first focus on properties such as ionization potentials
or charge transition levels, which can be expressed in terms
of total-energy differences. For such quantities, we observed
�i� a very good agreement between PBE0 and HSE and �ii� a
material-independent shift of �0.4 eV between sPBE0 and
PBE0 �or equivalently HSE�.

The good agreement between total-energy differences in
PBE0 and HSE has already amply been demonstrated in the
literature.8 This applies in a straightforward way to ioniza-
tion potentials of molecular systems. Following Ref. 22, this
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FIG. 5. Differences between planar-averaged electrostatic poten-
tials across the Si-SiO2 interface, when going from PBE to PBE0,
from PBE0 to HSE, and from PBE0 to sPBE0.

TABLE IV. Valence-band offsets �VBOs� and conduction-band
offsets �CBOs� calculated for the Si-SiO2 interface with various
hybrid functionals. Results obtained with the mixed scheme pro-
posed in Ref. 29 are also shown. The corresponding band gaps Eg

for silicon and amorphous SiO2 �a-SiO2� are given. Experimental
results for the band offsets are from Ref. 57. Energies are in elec-
tron volt.

Eg�Si� Eg�a-SiO2� VBO CBO

PBE 0.6 5.3 2.5 2.2

PBE0 1.8 7.9 3.2 2.8

HSE 1.2 7.1 3.2 2.8

Mixed scheme

PBE0 1.2 8.9 4.4 3.3

HSE 1.2 8.9 4.6 3.2

Expt. 1.2 8.9 4.4 3.4
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argument naturally extends to charge transition levels of
atomic-size defects provided they are referred to the average
electrostatic potential. This explains the close agreement in
Fig. 1 between PBE0 and HSE charge transition levels.

The shift of �0.4 eV found for sPBE0 calculations nec-
essarily results from the missing long-range exchange.
Whether nonlocal as in PBE0 or local as in HSE, this miss-
ing part appears to produce equivalent effects supporting the
accuracy of the HSE functional.8 For simplicity, we focus in
this section on the local expression for long-range exchange,

Ex
PBE,LR��� =� �x

PBE,LR���r�,s,����r�dr , �6�

where the long-range energy density per electron �x
PBE,LR is

defined as the difference between the PBE exchange energy
density and the short-range PBE exchange energy density,
introduced in Ref. 8: �x

PBE−�x
PBE,SR. The energy density

�x
PBE,LR is plotted in Fig. 6 as a function of both the density �

and the reduced gradient s= 	��	 / �2kF��, where kF
= �3�2��1/3. We note that for all considered values of the
reduced gradient, the energy density �x

PBE,LR flattens out at
large charge densities assuming a value of about −0.4 eV

per electron. The plateau sets in at lower charge density val-
ues when the reduced gradient s increases.

The range of interest for real systems is �
2.5
�10−4 a.u. and 0�s�3 �Ref. 31�. Furthermore, we note
that the integrand in Eq. �6� is density weighted, thus effec-
tively reducing the significance of low values of the charge
density. From these considerations, it appears that for any
real system the long-range exchange energy per electron is
expected to give a value ranging in between −0.35 and
−0.40 eV. For illustration, we also show in Fig. 6 distribu-
tions of charge densities and of reduced gradients, corre-
sponding to SiO2, Si, and naphtalene. These distributions
clearly demonstrate that the integrand has a predominant
weight for energy densities falling in the plateau region.

When the energy density assumes a nearly constant value,
the total long-range exchange energy can be approximated as

Ex
PBE,LR =� �x

LR��r�dr � Ne�x
LR, �7�

where Ne is the total number of electrons in the system and
�x

LR�−0.4 eV, nearly independent of the considered elec-
tronic system. This contribution accounts for the difference
between the total energy in sPBE0 and those obtained in
PBE0 or HSE, and can be used to correct sPBE0 calculations
a posteriori. In the ionization potential calculations for the
molecules in Sec. III A, a total-energy difference is consid-
ered between systems with N and N−1 electrons. Hence, the
missing long-range exchange energy in sPBE0 explains the
observed shift of �0.4 eV in the ionization potentials in-
volving a transition of a single electron. The same reasoning
also applies to the charge transition levels in Fig. 1.

It is important to point out that the value �x
LR�−0.4 eV

depends on the adopted values for the parameters � and �.
While the dependence on � is simply linear, the effect of the
screening parameter � is less trivial. In Fig. 7�a�, the depen-
dence of �x

LR on the charge density is illustrated for various
values of �. The onset of the plateau depends on �, and
moves to larger charge densities as � increases. The plateau
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Ex
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value of �x
LR depends almost linearly on �, as shown in Fig.

7�b�. However, the property of achieving a constant material-
independent contribution for �x

LR depends on the extent of
realistic charge density distributions. For values of � up to
0.106 bohr−1, i.e., the value used in the HSE functional,33

these electronic distributions almost completely locate in the
plateau region but for larger values of �, this property pro-
gressively deteriorates. Thus it appears that the value of
0.106 bohr−1 for � is about the largest one compatible with
a constant material-independent �x

LR. In other words, the
screening length in HSE is the smallest one for which the
long-range exchange energy density is essentially still mate-
rial independent. In HSE, the latter is treated locally while
the material-dependent short-range exchange is treated by a
close approximation of the nonlocal exact expression.

The discussion in this section is based on charge densities
which were obtained in the pseudopotential approximation.
When the charge density in all-electron approaches includes
that of the core electrons, higher densities �and higher gradi-
ents� are expected in the core regions. Consideration of such
high densities pushes �x

LR even further into the plateau re-
gion, reenforcing the constant nature of the average long-
range exchange energy density.

B. Generalized Kohn-Sham eigenvalues

Table V collects the shifts of the generalized Kohn-Sham
eigenvalues for HSE and PBE0 with respect to sPBE0. The
shifts reported in this table show trends which appear to be
material independent. In the comparison between HSE and
sPBE0, we observe a systematic downward shift by
�0.4 eV of the band structure. The comparison between
PBE0 and sPBE0 suggests a closure of the band gap by
�0.8 eV by the sole displacement of the occupied states.
For the materials studied, the deviations from these general
trends are within only 0.03 eV, except for silicon for which
the largest calculated deviation is 0.13 eV. In the following,
we provide a rationale for these features.

The relation between the band structures of sPBE0 and
HSE follows from the analysis in the previous section. The
effect of the long-range PBE exchange on the eigenvalues
can be obtained from the functional derivative,

vx
PBE,LR =

�Ex
PBE,LR

��
. �8�

In the regime in which the long-range exchange density is
constant, this results in a constant shift of the local potential.
Hence, both occupied and unoccupied states in HSE are
shifted downward with respect to their sPBE0 values.

To address the comparison between the generalized Kohn-
Sham eigenvalues of PBE0 and sPBE0, we describe the ei-
genvalue shifts using perturbation theory, ��n
= 
n	�v̂x

PBE,LR	n�, where �v̂x
PBE,LR corresponds to the long-

range part of the exact nonlocal exchange, which determines
the difference between PBE0 and sPBE0.

In a plane-wave basis set, the shift in the eigenvalues
reads58

��n�k� = �
G,G�

cn
��G + k�
G + k	�v̂x

PBE,LR	G� + k�cn�G� + k� ,

�9�

where the cn correspond to the coefficients of the wave func-
tions in the plane-wave representation and where the matrix
element of the exchange potential is given by


G + k	�v̂x
PBE,LR	G� + k�

= −
�

2�2�
m
� cm

� �G� + Q�cm�G + Q�
e−	k − Q	2/�4�2�

	k − Q	2
dQ ,

�10�

where the sum over m corresponds to a sum over occupied
states and the integration over Q is over the whole of recip-
rocal space. The Coulomb-type kernel decays exponentially
as 	k−Q	 increases and the decay length is set by �. We have
seen in the previous section that the HSE value for � is
chosen small enough to ensure that the long-range exchange
remains material independent. Hence, we assume that � is so
small that contributions only result from Q very close to k
and that the following approximation holds:

cm�G + Q� � cm�G + k� . �11�

The remaining integral over Q in Eq. �10� can be carried out
analytically for any k,

�

2�2� e−	k − Q	2/�4�2�

	k − Q	2
dQ =

2��

��
. �12�

For �=25% and �=0.106 bohr−1, this gives the value of
0.814 eV. The expression in Eq. �9� resulting from the sum-
mations over G and G� then simplifies because of the ortho-
normality of the wave functions,

�
G,G�,m

cn
��G + k�cm�G + k�cm

� �G� + k�cn�G� + k� = �
m

�nm
2 .

�13�

Since the sum over m only concerns occupied states, this
factor vanishes for unoccupied states and is equal to 1 for
occupied states. These considerations provide a rationale for
the relative positions of PBE0 and sPBE0 eigenvalues.

TABLE V. Valence-band edge shifts ��Ev�, conduction-band
edge shifts ��Ec�, and band-gap shifts ��Eg� of HSE and PBE0
with respect to sPBE0. The band structures of calculations with
different functionals are aligned through the average electrostatic
potential. All energies are in electron volt.

HSE PBE0

�Ev �Ec �Eg �Ev �Ec �Eg

Si −0.39 −0.37 0.02 −0.72 −0.05 0.67

SiC −0.40 −0.38 0.01 −0.79 −0.01 0.78

HfO2 −0.40 −0.38 0.02 −0.80 −0.01 0.79

SiO2 −0.40 −0.37 0.03 −0.80 −0.01 0.80
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We note that the above derivation relies on the validity of
the approximation in Eq. �11� when the distance in reciprocal
space between Q and k varies within a range determined by
the inverse screening length �. This approximation is ex-
pected to deteriorate when the wave-function coefficients un-
dergo strong variations for k varying in reciprocal space.
This is more likely to occur for small band-gap materials and
explains that the largest deviation from the general trend is
observed for silicon in Table V.

The shift of �0.8 eV between the eigenvalues of the oc-
cupied states in PBE0 and sPBE0 is not unrelated to the shift
of �0.4 eV per electron between the PBE0 and sPBE0 total
energies discussed in Sec. V A. Indeed, the total exchange
energy can be expressed as Ex= 1

2�n
occ
�n	v̂x	�n�, where the

factor 1/2 arises from the double counting of the interactions.
Note also that the shift of the defect levels by +0.4 eV when
going from PBE0 to sPBE0 is consistent with Slater’s
transition-state theorem,59

EN−1 − EN = − �n�1/2� � −
�n�0� + �n�1�

2
, �14�

where �n�f� specifies the generalized Kohn-Sham eigenvalue
at occupation f . Indeed, ��EN−1−EN�
0.4 eV, ���n�0��

0, and ���n�1��
0.8 eV.

VI. CONCLUSIONS

We have carried out a comparative study involving the
semilocal density functional PBE and three PBE-based hy-
brid functionals, including PBE0, HSE, and sPBE0. The
three hybrid functionals differ by the way the long-range
exchange energy is treated, namely, it is included at the exact
nonlocal level in PBE0, by a local expression in HSE, and is
fully neglected in sPBE0. The comparison focused on both
total energies and generalized Kohn-Sham eigenvalues.
Physical quantities concerned by our study are, for instance,
ionization potentials, charge transition levels of defects, band
gaps, band offsets at interfaces, and positions of defects lev-
els within band gaps. As the hybrid functionals considered in
this work are becoming increasingly popular to determine
these quantities, this investigation provides clear guidance
for comparing results achieved with different functionals. An
additional benefit achieved in this study is a deeper under-
standing of the role of both local and nonlocal long-range
exchange.

In this work, we focused on effects resulting from differ-
ent descriptions of the exchange interaction in hybrid func-
tionals. For this purpose, we performed all calculations with
the structural models relaxed at the PBE level. It is thus
understood that all the effects identified here do not include
relaxation effects. This limitation does not appear to be a
critical one since structural improvements achieved through
the use of hybrid functionals are generally minor, except
when driven by important modifications of the electronic
structure itself.

The main results achieved in this work are schematically
illustrated in Fig. 8. The figure shows the relative behavior of
band edges and defect levels when calculations with different

hybrid functionals are aligned through the average electro-
static potential. While the band edges correspond to general-
ized Kohn-Sham eigenvalues, the defect level is representa-
tive of quantities determined through total energy
differences. In fact, the illustrated relationships apply with-
out modification to HOMO/LUMO levels and to ionization
potentials in the case of finite molecular systems.

Quantities derived from total energies, including both ion-
ization potentials of molecules and charge transition levels of
defects, are found to be very similar in PBE0 and in HSE �cf.
Fig. 8�, consistent with other comparisons in the
literature.43,60 When long-range exchange is fully omitted as
in sPBE0, we found the total energies to increase by about
0.4 eV per electron compared to PBE0 or HSE.

The generalized Kohn-Sham eigenvalues obtained with
the three hybrid functionals also show characteristic shifts
�cf. Fig. 8�. With respect to PBE0, the band gap in sPBE0
closes by �0.8 eV, and results from an upward displace-
ment of all the occupied states. Going from sPBE0 to HSE,
all the eigenvalues shift down by �0.4 eV. Hence, the HSE
eigenvalues are obtained from the PBE0 ones by an upwards
shift of the occupied levels by �0.4 eV and a downward
shift of the unoccupied levels by the same amount. It is im-
portant to note that all these shifts are to a large extent inde-
pendent of the system studied, allowing for simple compari-
sons between calculations performed within this set of
hybrid functionals.

The scheme in Fig. 8 can also be used to compare the
position of defect levels in the band gap when referenced
with respect to the valence-band maxima. Accounting for the
relative shifts of the band edges and of the defect level, one
finds that the defect level in PBE0 lies 0.4 eV higher with
respect to the valence-band edge than in sPBE0 and in HSE.
This shift needs to be accounted for when comparing defect
levels in HSE and PBE0 calculations. At variance, not only
the size of the band gap but also the location of the defect
level within the band gap is identical in sPBE0 and in HSE,
despite their different situation with respect to the average
electrostatic potential. This implies, for instance, that earlier

FIG. 8. Schematic representation of relative position of valence-
band �VBM� and conduction-band �CBM� edges as obtained from
the generalized Kohn-Sham eigenvalues with different hybrid func-
tionals. A defect charge transition level � as obtained through dif-
ferences of total energies is also represented. The different elec-
tronic structures are aligned through the average electrostatic
potential 	. Note that the indicated shifts of �0.4 eV and �0.8 eV
are material-independent.
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defect-level calculations in sPBE0 �Ref. 20� can just as well
be thought as obtained with HSE.

The band offsets at interfaces calculated with various hy-
brid functionals were also addressed in this work. All the
hybrid functionals considered reproduce interface dipoles in
an equivalent way. Hence, differences in band offsets only
result from shifts of the band edges when going from one
hybrid functional to another �cf. Fig. 8�. These shifts have
been found to be independent of material, and thus are the
same for both interface components. Combined with the
equivalent interface dipoles, one concludes that the band off-
sets calculated with any hybrid functional considered are
nearly identical.

The material-independent nature of the shifts between to-
tal energies and eigenvalues obtained with the various func-
tionals is here not only empirically observed for specific case
studies but also supported by general considerations. These
considerations point out that the screening parameter, �
=0.106 bohr−1, introduced in HSE, is such that the resulting
long-range exchange energy can well be approximated by a
fixed material-independent energy per electron. This obser-
vation underlies all the shifts in Fig. 8. Furthermore, the
constant nature of the long-range nonlocal exchange energy
supports its replacement by a local expression as done in
HSE, shedding light on the overall good agreement between
total energies determined in PBE0 and HSE.

Finally, we considered differences between PBE0-like and
HSE-like functionals that might arise when adhering to the

common practice of tuning � for reproducing the experimen-
tal band gap. This practice is, in principle, not equivalent
when applied to PBE0 or HSE. In PBE0, the band-edge
shifts are governed by exact nonlocal exchange, which gen-
erally results in unequal shifts of the conduction and valence
bands. At variance, in HSE, part of the band-edge shifts is
accounted for by constant shifts that act symmetrically on
valence- and conduction-band edges. Nevertheless, our in-
vestigation shows that the resulting differences are very
small, finding differences in band-edge levels of only
�0.2 eV in the worst case. This result implies that, when the
band gap is tuned, PBE0 and HSE yield nearly identical
results for defect level positions in the band gap and for band
offsets at interfaces.
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